BPEL4WS Document Management with an Active
Deductive XML Database

1Jose Oscar Olmedo-Aguirre, 'Giner Alor-Hernandez, 2Juan Miguel Gomez

Research and Advanced Studies Center of IPN (CINVESTAV).
Electrical Engineering Department. Computing Section.
Mexico City, Mexico.
2Digital Enterprise Research Institute (DERI). National University of Ireland, Galway
Galway, Ireland.
e-mail: oolmedo@delta.cs.cinvestav.mx, gineralor@computacion.cs.cinvestav.mx,
juan.gomez@deri.org

Abstract. BPEL4WS (Business Process Execution Language for Web Services) is a
process modeling language for representing compositional workflow structures that
coordinate elementary Web service invocations. Nonetheless, a major problem in
BPEL4WS modeling is that the language does not support generic definition of work-
flows. The importance of generic workflow definitions relies on describing increas-
ingly complex forms of recurring situations abstracted from the various stages of
business collaboration. In this paper, the problem of defining and instantiating ge-
neric BPEL4WS workflows is addressed by using ADM, an active deductive model
for XML database management. The ADM management system extends the
BPEL4WS workflow engine with an inference engine to develop a rational behavior
hidden in the Web services provided. Among the salient contributions of this work,
the brokering architecture developed so far comprises a business agency, a repository
of workflow patterns of interaction describing common business practices that can be
instantiated with appropriate business partners.

1 Introduction

Web services are emerging as a suitable approach to support business collaboration.
Web services are standardized mechanisms for integrating applications based on an
open programming interface capable of being described and discovered as XML
documents. Once deployed, Web services can be invoked by application programs or
other Web services leading to the definition of composite Web services. Composi-
tional languages and models provide the means to describe workflow structures to
coordinate Web service invocations. An important compositional language is Busi-
ness Process Execution Language for Web Services (BPEL4WS) that orchestrates
diverse applications to conduct a business process [2]. As other compositional lan-
guages, BPEL4WS provides the means to specify the order in which the services are
to be combined as indicated by a composition schema. Therefore the schema can be
seen as a kind of program written in a programming language. Nonetheless,

© A. Gelbukh, C. Ydnez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 211-220

212 Olmedo Aguirre J., Alor Herndndez G., Gomez M.

BPEL4WS cannot be used as generic business process description language because
it does support the notion of procedures and parameters.

In this paper, the problem of managing generic BPML process descriptions is ad-
dressed by using ADM, an active deductive XML database model for managing XML
databases that are augmented with rational and reactive behavior. By extending XML
with logical variables and logical procedures, the ADM programming model is not
only able to represent generic BPEL4WS definitions but also it provides the means to
instantiate and enact process descriptions either by submitting the process instance to
a BPEL4WS compositional engine or by interpreting the BPEL4WS language con-
structs according to the ADM rule semantics. The support of Web service composi-
tion grounds on the fact that the composition engine can be considered as a kind of
reactive system. ADM reacts to messages received from clients or other services as it
progresses through the coordination schema, possibly undertaking some actions.
Since rules are always selectable for execution, they can model the start-up of activi-
ties signaled by the occurrence of message operation events during the enacment of a
business process. Exception-handling, a domain that characterizes by its asynchro-
nous and reactive nature, can be conveniently managed by rule-based systems.
Though rule-based systems do not impose any order in selecting rules, in the ADM
model, sequential and parallel constructs are proposed to restrict the valid sequences
of actions.

2 BPEL4WS Compositional Language

BPEL4WS builds on Microsoft’s XLANG (Web Services for Business Process De-
sign) [3] and IBM’s WSFL (Web Services Flow Language) [4] combining block
structured language constructs borrowed from XLANG with a graph-oriented nota-
tion originated from WSDL. BPEL4WS closely follows the WS/Coordination and
WS/Transaction specifications. The former describes how Web services may use
predefined coordination contexts to be associated to a particular role in a collabora-
tion activity [5]. The latter provides an infrastructure that provides transaction seman-
tics to the coordinated activities [6]. A BPEL4WS document consists of three parts
describing data, coordination activities and communication activities [7]. Data tags
are used to define a set of external partners and the state of the workflow. Coordina-
tion activity tags define the process behavior by means of conventional control flow
structures. Finally, communication activity tags define communication with other
Web services through coordination activities by sending and receiving information.

3 Management of BPEL Documents

Orchestration of Web services using BPEL4WS consists of building at design time a
fully instantiated workflow description where connections to external Web services
are defined to be executed later on. In this schema, workflows are completely deter-
mined since business partners are known before hand.

BPEL4WS Document Management with an Active Deductive XML Database 213

3.1. Defining generic workflow definitions

Each template describes generic commercial activities. As an example, if purchasing
a book, the client might be interested in buying the book in the store that offers either
the lowest price or the minimum delivery time. If the client wants to buy several
books at the lowest price, BPM will retrieve from a database the location of the
BPEL4WS workflow template that uses the purchase-criteria selected. Once the tem-
plate is located, ADM uses some related configuration files in order to instantiate
them. ADM organizes a collection of XML documents in extensional and intentional
databases. Extensional databases are collections of standard XML documents that
does not require of additional mark-up. Intentional databases are collections of logical
procedures and ECA rules called programs. In order to introduce generic BPEL4WS
definitions, ADM extends XML elements with logical variables. Logical variables are
used to define the integrity constraints imposed on the document contents and to
formulate queries to bind values to variables. Logical variables can be of either type
string (prefixed by a ’$’) or term (prefixed by a *#’) and they may occur in elements
and in attributes. Integrity constraints are introduced by means of logical procedures.
Fig. 1 shows an example of a generic BPEL4WS definition that includes logical vari-
ables.

3.2 Instantiating the workflow

We have developed a BPM (Business Processes Manager) which obtains the tem-
plates that can be used to find the suppliers that offer the product required by the
client. A query to a database containing the WSDL documents provided by BPM can
retrieve the appropriate Web services to obtain price, delivery time, quantity, and
purchase access point of the product. An instance of the generic BPEL4WS document
is obtained by substituting each logical variable by its bound value that appears next
to the variable in Fig. 1. The logical variable $PWSDL is used to place pieces of
information related to the WSDL for the Web service provided whose behavior is
given by this template. If variable $PWSDL is bound to string value
"http://www .cinvestav.com/getPriceandDeliveryTime.wsdl", after completion of full
instantiation of this document, the value will appear instead of logical variable
$PWSDL. These services are getPriceandDeliveryTime, getProviderQuantity, and
getProviderURLBuy, respectively, that are based on UNSPSC and RosettaNet on-
tologies.

3.3 Enacting the workflow

After the workflow has been fully instantiated, the workflow can be executed. The
instantiated templates are allocated in a BPEL4WS engine for execution. To commu-
nicate with the running workflow, BPM builds SOAP messages containing the infor-

mation provided by the client.

<process name="lowpriceprocess" ...
xmins="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmins}: $PN| pn0= EPWSDL| "http://www.cinvestav.com/getPriceandDelivery Time.wsdl"

214 Olmedo Aguirre J., Alor Herndndez G., Gémez M.

xmins:tns="http://www.cinvestav.com/getLowPrice wsdl"/>
<partnerLinks>

<partnerLink name="User" partnerLinkType="tns:UserSLT"
partnerRole="InformationProvider"/>

<partnerLink name="partnerOLT" partnerLinkType="tns:partnerOPLT"
partnerRole="partnerOProvider"/>

</partnerLinks>

<variables>
<variable name= [EURcq| "uRequest” messageType="tns:getLowPriceRequest"/>

<variable name= fURc¢s "uResponse” messageType="tns:getLowPriceResponse"/>
<variable name= [§PRe(g| "partnerORequest" messageType="pn0:getArrayRequest"/>
<variable name= [SPRes| "partnerOResponse” messageType="pn0:getArrayResponse"/>

</variables>
<sequence name="sequence"/>
<receive name="receiveRequest” operation="getLowPrice"

partnerLink="User" portType="tns:getLowPricePortType"
createlnstance="yes" variable= "uRequest"/>
<assign name="CreateLowPricelnput">

<copy>

<from variable= [fUReg "uRequest™/>

<to variable= m "partnerORequest”/>

</copy>

;/:assign>)

<invoke name="invokeService" inputVariable= "partnerORequest"
operation="getArray" outputVariable= "partnerOResponse"
partnerLink="partnerOLT" portType="pn0:getArrayPortType"/>

<reply name="sendInformation" operation="getLowPrice”
partnerLink="User" portType="tns:getLowPricePortType"
variable= "uResponse"/>

</sequence>

</process>

Fig. 1 In a generic BPEL workflow definition, the document contains logical variables that
appear prefixed by a dollar sign. In an instance of the workflow, the document contains only
the values bound to the variables (shown here next to the variables).

Once the workflow has been successfully terminated, it sends back to the client the
list of suppliers satisfying client’s conditions. Then, the workflow is deallocated from
the workflow engine. After the client selects the suppliers, a BPWL4WS template for
placing a purchase order is now retrieved from the repository, completed and exe-
cuted as described before.

By enacting this workflow the purchase orders are sent to the suppliers and the corre-
sponding answers from each supplier are eventually received. This example has
shown that ADM provides the means not only for defining generic BPEL4WS de-
scriptions but also for producing instances and send the instance for execution to the
BPEL4WS workflow engine. In that follows, we show that ADM can also interpret

BPEL4WS Document Management with an Active Deductive XML Database 215

the BPEL4WS language constructs if the basic model described in [9] is extended
with basic communication operations.

4 Operational Semantics
4.1. Basic Definitions

In this section a few basic definitions for XML terms are given to formally introduce
the operational semantics of ADM. The XML term <aa; =TI ... a,, = Th> ... V2>
is normalized if its list of attribute-value pairs is lexicographically ordered by the
name of the attribute in increasing order: a; < ajifi<j, Vi,je {1, ..., m}. The set
of substitutions X consists of the partial functions XML Variable — XMLTerm.
Computed answers to queries are obtained by the composition oo’ of substitutions o
and o”. The null substitution ¢ is the identity for substitution composition eo= ce =0
A ground substitution does not introduce any variable. The natural extension o::
XMLTerm — XMLTerm of a substitution defined over variables to XML terms is
denoted by the same name. The instance of an XML term x under substitution o is
denoted by xo and its inductive definition on the structure of the XML term is given
in Fig. 2. Instances of XML terms under ground substitutions are called ground in-
stances. A unifier o for the XML terms T and S is a substitution that produces syntac-
tically identical instances To = So. The most general unifier (mgu) is a unifier that
cannot be obtained as the composition of any other. Unification of XML terms pro-
vides a uniform mechanism for parameter passing, construction and selection of the
information contained in the XML document.

<aa; =T; a3, =Tp,>B, .- -B,,c P
Z0'. o' = mgu(head(A)),<aa; =T --a, =T, >)
(<query>AiAz--- An</query>,0) — (<query>Bic’ - -Bino'A20’ - -- Ao’ </query>,0a’)

(<query>C) - - - Cr</quary>. €) —* (<query> </querys, o)
F =, <query>C, - C;</query>

Fig. 2 SLD Inference Relation

4.2 Deductive Database Model

A logical procedure has the form <b bl =T, ... b, = T,> B, ... B, comprising a
head and a body. The head <b b, = T; ... b, = T, > consists of a procedure name b
and a list of parameter names b, ... b, associated with their respective terms T, ... Th.
The body B, ... By consists of a sequence of procedure calls. A procedure call has
either the form <b b; =S, ... by, =Sn/>orthe form<b b, =S, ... b, = S, >A, ... A,
 where S, ... S, are the XML terms passed to the procedure and A, . Anpare

216 Olmedo Aguirre J., Alor Herndndez G., Gémez M.

XML terms. The former case corresponds to a call to a defined procedure, whereas
the latter case corresponds to a consult to the extensional database. In any case, unifj-
cation is used for parameter passing, and equality comparison between documents
with complex structure. The function var : XMLTerm — P XML Variable is defined
to obtain the set of variables occurring in a term (here P stands for the power set
operator).

The meaning of a logical procedure is given by the interpretation of an SLD-
resolution [6]. Conversely, the declarative reading of a logical procedure establishes
the validity of the call to the procedure head whenever all the conditions forming the
procedure body are valid. An SLD resolution step of the logical procedure <b b, = T,
... b, = T, >B; ... By in the query <query>A, ... A, </query> is obtained by
replacing an instance of the body Byo’ ... Bno’ under the most general unifier g of
the first call A, in the query and the head <b b, =T ... b, = T, /> of the procedure.
An SLD resolution step is thus defined as the relation =c (XMLTerm x J) x
(XMLTerm x 2) that transforms the query (<query>A, A, ... A, </query>; 0) into
the query (<query>B,0". B,0'Ay0 ... A,0'</query>; 00") by replacing the proce-
dure call Ao’ by the instance of the procedure body B,0" ... Bno" under .

4.3 Active Database Model

The consistency-preserving and reactive behavior are described by ECA rules. An
alerter mechanism notifies the system when a collection of XML documents changes
by inserting or deleting a document. The event section E uses a document template to
retrieve the required information sent by the alerter. Then one or more rules may be
selected and tested against the content of the document Ecy, associated with the event.
In this case, condition C is checked and if the condition holds, the actions of deleting
B or inserting A the argument document are executed. Ordering of actions can be
defined by composing rules R either sequentially or in parallel.

The operational semantics of rule execution, given in Fig. 3, defines the reduction
relation: M XMLTerm x ¥ — (M XMLTerms x > U M XMLTerms) where M
XMLTerm denotes multisets of XML terms, including logical procedures and ECA
rules. The notation /P/D denotes a document D located at path P, possibly including
the host name. After observing event E.y, , if there is a computed answer ¢~ for both
extended program P U {E.} and condition <query>E C, ... C; </query>, then the
collection of documents in both extensional and intensional databases are modified by
deleting the instance of documents B,¢”;...; B,o” and inserting the instance of docu-
ments A,07; ... ; Ano” under &’. In the rule, E.,, denotes the external document ob-
served by the event handler, whereas E denotes sub-element rule/on of the document
that contains the rule. As indicated by including E in the query, the structure of docu-
ment E., must match the structure given by E. The difference © and union © opera-
tors for multisets of documents are used instead of the corresponding operators OVer
sets due to the multiplicity of documents is important. The order in that documents
are deleted or inserted is not specified. By using instance of documents under substi-
tutions, the semantics captures the propagation of values among logical variables
across documents. The operational semantics for the termination condition of rule
execution is given also in Fig. 3. After observing the event E that triggers a rule, the

BPEL4WS Document Management with an Active Deductive XML Database 217

rule does not execute if the current contents of the XML databases does not entail the
rule condition. In this case, the reduction relation — leads to the program singleton P.

<rule>

<on>E</on>

<1f>C, -..Cp</if>

<do> P
<delete>B, - - - B,,</delete>
<insert>A; - .- An</insert>

</do>

</rule>

0" P |Ecu) =, <query>EC) - - - Cr</query>
(P.o) (P IBio..... Bno '} & {A10, ..., Amo' }.00’)

ot P \Ecrt] =, <query>EC; .- Cr</query>
(P.o) -— P

Fig. 3 Reduction Relation of Active Rules

As Web services based business collaborations are long-running interactions that
exchange documents enclosed in SOAP messages, rules for receiving and sending
documents have been included to extend the programming model of ADM as pre-
sented in [9]. The rules coordinate the interaction between internal activities and
external protocol messages. Basic workflow activities are modelled by the notifica-
tion (or the receipt) of a message to (from) a Web service:

~ Notifications of messages to other Web servers are modeled by means of non-
blocking send operations.

— Invocations of synchronous request/reply operations are modeled by means of
blocking invoke operations.

— Reception of messages invoking composite services are modelled by means of
blocking receive operations. If the received message is invoking a composite service,
the response to the invoking client is sent by a reply operation.

The operational semantics of the basic message exchange operations for receiving
and sending documents are given next.

The rule for receiving documents D from either a directory or a document server
located at path P is given in Fig. 4. If the document collection, including document
[P/Dey: , entails the rule condition, an instance of the document collection is obtained
by applying the actions given by A (by inserting or removing instance of documents).
Otherwise, rule does not apply leaving the document collection unchanged.

The rule for sending local document Dy, to either a directory or a server located at P
is given in Fig. 5. If local document Dy, exists and if collection P U {Dj,.} of docu-
ments entails the rule condition, an instance of Dy, is placed at /P/, keeping un-

218 Olmedo Aguirre J., Alor Herndndez G., Gémez M.

changed the local document. Otherwise, the rule terminates maintaining the entire
collection with no change.

<rule>
<on>
<receive>
<doc>D</doc><from>P</from>
</receive> e P
</on>
<if>C</if>
<do>A</do>
</rule>

Jg’. P 1 {/P/Den) |=a¢ <query>DC</query>
(P 3 {/P/Di},a) — (A(Pa’ @ {/P/Daic’)), 00")

—26'. P {/P/D.rt } o <query>D C</quary>
(P+ [/P/Dat.0) — P [/P/Doce)

Fig. 4 Reduction rule for receiving a document

<rule>
<if>C</if>
<do>
<send>
<doc>D</doc><to>P</to>
</send>
</do>
</rule>

0’ Dioc. P! {Dioc} =or <query>DC</query>
(_p S {D‘m:}1 o‘) —_ (P 25 {Dfut:- lp/Dfal:a"}Y o.a')

g, P {Dt,c} ot <quory>D C</query>
(P 5 {Dix},0) — P & {Dtoc}

Fig. 5 Reduction rule for sending a document

Though an underlying model of distributed, shared repository of documents is fun-
damental in the design of ADM, the decision for using the same addressing scheme
for both the collection and the document server greately simplifies the programming
model since ultimately the active server provides the means for accessing the collec-
tion of documents it holds. An unpredictable behavior may arise due to rules may
interfere with each other preventing their execution. In order to reduce the non-
determinism in the ordering of actions, the sequential and parallel composition of
rules are introduced in [9] to schedule their execution.

BPEL4WS Document Management with an Active Deductive XML Database =~ 219

Nonetheless, the purpose of composition of Web services contrasts with coordination
protocols. Coordination protocols, similar to speech acts communication of multi
agent systems, makes possible for agents to synchronize their exchange of messages.
Conversation compliant with a coordination protocol are supported by conversation
controllers, whose purpose is not to execute any business logic, but to control mes-
sages to internal objects and to verify protocol compliance. The coordination protocol
imposes requirements on how the composition is to take place, since the order in
which are invoked has to be compliant with the protocol definition. In comparison,

the composition logic determines the conversation that a composite service is able to
execute.

S Related Works

In [10] a far different solution to the problem addressed in this paper is proposed.
Executable BPEL4WS documents are not created from a repository of templates.
Instead, a dynamic binder and invoker module communicates with a generic Web
service proxy to dynamically bind external Web services. Despite the elegance of this
solution, the generic Web service proxy becomes a bottleneck because it coordinates
all kind of interactions occurring in the business process, from finding suitable candi-
date services to binding compatible services and invoking them. In comparison, our
approach produces separate workflows that run independently and more efficiently
from each other without recurring to a central invoker. In [11] mechanisms for dy-
namically discovering Web services using semantic extensions to UDDI are sug-
gested. In [12] a different approach is presented. They semi automatically generate
process composition by using semantic capabilities of Web services. Finally, in [13]
another approach is presented combining Semantic Web technology and BPEL4WS
to achieve dynamic binding. In comparison to all these approaches, we have not con-
sidered any form of semantic matching to automatically select the suitable service
required. We believe that the use of the rational aspects of ADM can provide a solu-
tion for reasoning about the semantic matching of web services.

6 Conclusions

In this paper we have discussed the need for automating the process of binding dbf’
namically business partner information into a workflow template. As a solution to t.hlS
problem we have proposed a repository of generic business process definitions using
the ADM system. These business processes are widely used in commercial organiza-
tions to achieve particular business targets. A simple and uniform model for active
and deductive XML databases has been proposed in this paper. The ADM language
extends the XML language by introducing logical variables, logical procedures and
ECA rules. An experimental distributed system with layered architecture has been
implemented that maintains the openness of the XML data by keeping apart the lan-

220 Olmedo Aguirre J., Alor Herndndez G., Gémez M.

guage extensions. As future work, we plan to develop some support for the execution
of BPEL4WS workflows.

References

[

. J. Bailey, A. Poulovassilis, P. T. Wood, Analysis and optimization of event-
condition action rules on XML. Computer Networks, 39:239-259. 2002.

2. N. W. Paton, O. Diaz, Active database systems. ACM Computing Surveys, 31(1):
64-103. 1999.

3. M. Bambara, N. Tamura, Translating a linear logic programming language into
Java. In Proceedings of ICLP’99 Workshop on Parallelism and Implementation
Technology for (Constraint) Logic Programming Languages. pp. 19-39, Dec
1999.

4. O. Lassila, R. Swick, Resource Description Framework (RDF) Model and Syntax

Specification, W3C Recommentation, http://www.w3.org./TR/REC-rdf-syntax

The DARPA Agent Markup Language Homepage, http://www.daml.org/

J. W. Lloyd, Foundations of Logic Programming. Springer-Verlag, 1987.

7. M. Liu, G. Dobbie, T. W. Ling, A logical foundation for deductive object-
oriented databases, ACM Transactions on Database Systems, 27(1), pp. 117-151.
2002

8. A. Martelli, U. Montanari, An efficient unification algorithm, ACM Transactions
on Programming Language and Systems, 4(2): 258-282, April, 1982.

9. Oscar Olmedo-Aguirre, Karina Escobar-Vazquez, Giner Alor-Hernandez, Gui-
llermo Morales-Luna, ADM: An Active Deductive XML Database System. Lec-
ture Notes in Artificial Intelligence Vol. 2972, pp.139-148. April, 2004.

10. Verma K., et al. ”On accomodating inter service dependencies in Web process
flow composition”.

11. Paolucci M., et al. “Importing the semantic web in UDDI”, in Web Services, E-
Business and Semantic Web Workshop.

12. Sirin E., et al. ”Semi automatic composition of web services using semantic de-
scriptions”, Web Services: Modeling, Architecture and Infrastructure workshop in
conjunction with ICEIS2003, 2003.

13.D. J. Mandell, S. A. Mcllraith, Adapting BPEL4WS for the Semantic Web: The

Bottom-Up Approach to Web Service Interoperation. The Proceedings of the Sec-

ond International Semantic Web Conference (ISWC2003).

g

